Algèbre linéaire Exemples

Trouver le rang [[-6,2,-4],[9,-8,1],[-9,1,6]]
[-62-49-81-916]
Étape 1
Déterminez la forme d’échelon en ligne réduite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multiply each element of R1 by -16 to make the entry at 1,1 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Multiply each element of R1 by -16 to make the entry at 1,1 a 1.
[-16-6-162-16-49-81-916]
Étape 1.1.2
Simplifiez R1.
[1-13239-81-916]
[1-13239-81-916]
Étape 1.2
Perform the row operation R2=R2-9R1 to make the entry at 2,1 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Perform the row operation R2=R2-9R1 to make the entry at 2,1 a 0.
[1-13239-91-8-9(-13)1-9(23)-916]
Étape 1.2.2
Simplifiez R2.
[1-13230-5-5-916]
[1-13230-5-5-916]
Étape 1.3
Perform the row operation R3=R3+9R1 to make the entry at 3,1 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Perform the row operation R3=R3+9R1 to make the entry at 3,1 a 0.
[1-13230-5-5-9+911+9(-13)6+9(23)]
Étape 1.3.2
Simplifiez R3.
[1-13230-5-50-212]
[1-13230-5-50-212]
Étape 1.4
Multiply each element of R2 by -15 to make the entry at 2,2 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Multiply each element of R2 by -15 to make the entry at 2,2 a 1.
[1-1323-150-15-5-15-50-212]
Étape 1.4.2
Simplifiez R2.
[1-13230110-212]
[1-13230110-212]
Étape 1.5
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
[1-13230110+20-2+2112+21]
Étape 1.5.2
Simplifiez R3.
[1-13230110014]
[1-13230110014]
Étape 1.6
Multiply each element of R3 by 114 to make the entry at 3,3 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Multiply each element of R3 by 114 to make the entry at 3,3 a 1.
[1-13230110140141414]
Étape 1.6.2
Simplifiez R3.
[1-1323011001]
[1-1323011001]
Étape 1.7
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[1-13230-01-01-1001]
Étape 1.7.2
Simplifiez R2.
[1-1323010001]
[1-1323010001]
Étape 1.8
Perform the row operation R1=R1-23R3 to make the entry at 1,3 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 1.8.1
Perform the row operation R1=R1-23R3 to make the entry at 1,3 a 0.
[1-230-13-23023-231010001]
Étape 1.8.2
Simplifiez R1.
[1-130010001]
[1-130010001]
Étape 1.9
Perform the row operation R1=R1+13R2 to make the entry at 1,2 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 1.9.1
Perform the row operation R1=R1+13R2 to make the entry at 1,2 a 0.
[1+130-13+1310+130010001]
Étape 1.9.2
Simplifiez R1.
[100010001]
[100010001]
[100010001]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22, and a33
Pivot Columns: 1,2, and 3
Étape 3
The rank is the number of pivot columns.
3
 [x2  12  π  xdx ]